汽车电子操控辅助系统全解析
提示:微信搜索"CARXCS"↑免费订阅本刊
电子限速
电子限速的作用是限制车速过高,防止因车速过高造成事故。电子限速器可以实时监测车辆的速度,当车速达到一定值的时候,它就会控制供油系统和发动机的转速,这时即使踏下油门踏板,供油系统也不会供油。
一些汽车由于安全方面的考虑将最高时速进行了限制,比如德国的奔驰、宝马以及奥迪的部分车型都将最高车速限定在250km/h。
EPS电动助力转向系统
EPS电动助力转向系统
电动助力转向系统(Electric Power Steering,缩写EPS)是一种直接依靠电机提供辅助扭矩的动力转向系统,与传统的液压助力转向系统HPS(Hydraulic Power Steering)相比,EPS系统具有很多优点。EPS主要由扭矩传感器、车速传感器、电动机、减速机构和电子控制单元(ECU)等组成。
工作原理
EPS的基本原理是:转矩传感器与转向轴(小齿轮轴)连接在一起,当转向轴转动时,转矩传感器开始工作,把输入轴和输出轴在扭杆作用下产生的相对转动角位移变成电信号传给ECU,ECU根据车速传感器和转矩传感器的信号决定电动机的旋转方向和助力电流的大小,从而完成实时控制助力转向。因此它可以很容易地实现在车速不同时提供电动机不同的助力效果,保证汽车在低速转向行驶时轻便灵活,高速转向行驶时稳定可靠。
电动助力转向系统是在传统机械转向系统的基础上发展起来的。它利用电动机产生的动力来帮助驾驶员进行转向操作,系统主要由三大部分构成,信号传感装置(包括扭矩传感器、转角传感器和车速传感器),转向助力机构(电机、离合器、减速传动机构)及电子控制装置。电动机仅在需要助力时工作,驾驶员在操纵转向盘时,扭矩转角传感器根据输入扭矩和转向角的大小产生相应的电压信号,车速传感器检测到车速信号,控制单元根据电压和车速的信号,给出指令控制电动机运转,从而产生所需要的转向助力。
优点
相比传统液压动力转向系统,电动助力转向系统具有以下优点:
1、只在转向时电机才提供助力,可以显著降低燃油消耗
传统的液压助力转向系统由发动机带动转向油泵,不管转向或者不转向都要消耗发动机部分动力。而电动助力转向系统只是在转向时才由电机提供助力,不转向时不消耗能量。因此,电动助力转向系统可以降低车辆的燃油消耗。
与液压助力转向系统对比试验表明:在不转向时,电动助力转向可以降低燃油消耗2.5%;在转向时,可以降低5.5%。
2、转向助力大小可以通过软件调整,能够兼顾低速时的转向轻便性和高速时的操纵稳定性,回正性能好。
传统的液压助力转向系统所提供的转向助力大小不能随车速的提高而改变。这样就使得车辆虽然在低速时具有良好的转向轻便性,但是在高速行驶时转向盘太轻,产生转向“发飘”的现象,驾驶员缺少显著的“路感”,降低了高速行驶时的车辆稳定性和驾驶员的安全感。
电动助力转向系统提供的助力大小可以通过软件方便的调整。在低速时,电动助力转向系统可以提供较大的转向助力,提供车辆的转向轻便性;随着车速的提高,电动助力转向系统提供的转向助力可以逐渐减小,转向时驾驶员所需提供的转向力将逐渐增大,这样驾驶员就感受到明显的“路感”,提高了车辆稳定性。
电动助力转向系统还可以施加一定的附加回正力矩或阻尼力矩,使得低速时转向盘能够精确的回到中间位置,而且可以抑制高速回正过程中转向盘的振荡和超调,兼顾了车辆高、低速时的回正性能。
3、结构紧凑,质量轻,生产线装配好,易于维护保养
电动助力转向系统取消了液压转向油泵、油缸、液压管路、油罐等部件,而且电机及减速机构可以和转向柱、转向器做成一个整体,使得整个转向系统结构紧凑,质量轻,在生产线上的装配性好,节省装配时间,易于维护保养。
4、通过程序的设置,电动助力转向系统容易与不同车型匹配,可以缩短生产和开发的周期。
由于电动助力转向系统具有上述多项优点,因此近年来获得了越来越广泛的应用。
电动助力转向系统是在机械式转向系统的基础上,加装了电机及减速机构、转矩转角传感器、车速传感器和ECU电控单元而成。
刹车优先
刹车优先系统(Brake Override System,BOS)是指一个让驾驶员在踩下加速踏板且油门全开(即油门踩到底)的情况下,仍然能够通过踩下制动踏板将车停下的系统,也就是说刹车优先系统在探测到驾驶员试图实施制动没有成功时,会自动将发动机工作切换到怠速状态。
刹车优先的工作原理
“刹车优先系统”的工作原理是:在油门工作状态先于刹车时才能启动,也就是说车辆行驶过程中,我们先踩下油门踏板并保持深度,随后用左脚踏下刹车踏板,此时电脑才会将信号传递到节气门传感器,并将喷油信号降至最低。这套系统分为:配合拉线油门的机械式和电子油门的电控式,但无论是怎样的实现形式,最终的效果都一样,避免刹车和油门打架,导致刹车失灵。以拉线式油门踏板为例,在发动机顶部有油门开关,一个半圆形的上面有钢丝拉着。这个钢丝就直接通往油门脚踏板。当一踩油门踏板,这个钢丝就拉着那个油门开关把油门打开。但实际上连结油门开关的钢丝有两根。其中一个是通往油门踏板的,另一个是被一个油门缓冲器拉着。因为如果没有缓冲器,当脚一放开油门踏板,油门立刻回到怠速,这时在车内就会感到“咯噔”一下窜车,非常影响车的舒适感。所以当松开油门,由于油门缓冲器的作用,油门不会一下子下来,而是缓慢下来。当油门踏板被踩下的力度越大,油门缓冲器的作用越明显。所以当松开油门去踩刹车,刹车刹的不仅仅是车子的惯性,还有高速运转的发动机!因为油门还没有完全回到怠速。刹车优先系统可以让油门的供油系统立刻回到怠速位置,哪怕另一只脚去踩油门,或者油门卡住了,也不会给发动机加油。即使是正常制动(不是同时踩油门条件下制动这种极端条件下),带有刹车优先系统与没有这套系统的车辆相比,制动距离也会有明显缩短,所以对车辆安全性能有很大提高。
电子油门
电子油门通过位置传感器,传送油门踩踏深浅与快慢的讯号,这个讯号会被ECU接收和解读,然后再发出控制指令要节气门依指令快速或缓和开启它应当张开的角度。这个过程精准而快速。
与传统油门比较,电子油门明显的一点是可以用线束(导线)来代替拉索或者拉杆,在节气门那边装一只微型电动机,用电动机来驱动节气门开度。即所谓的“导线驾驶”,用导线代替了原来的机械传动机构。
电子油门控制系统主要由油门踏板、踏板位移传感器、ECU、数据总线、伺服电动机和节气门执行机构组成。位移传感器安装在油门踏板内部,随时监测油门踏板的位置。当监测到油门踏板高度位置有变化,会瞬间将此信息送往ECU,ECU对该信息和其它系统传来的数据信息进行运算处理,计算出一个控制信号,通过线路送到伺服电动机继电器,伺服电动机驱动节气门执行机构,数据总线则是负责系统ECU与其它ECU之间的通讯。由于电子油门系统是通过ECU来调整节气门的,因此电子油门系统可以设置各种功能来改善驾驶的安全性和舒适性,其中最常见的就是牵引力控制系统和巡航控制。
电子功率控制
EPC(Electronic Power Control)全称发动机电子功率控制系统,很多人也叫它ETC(Electronic Throttle Control)电子节气门。该系统由一些传感器、控制器等元件组成。当某传感器出现故障或感知到不正常的情况时,控制系统就会根据设置好的程序采取相应的措施。
以往驾驶员根据发动机的动力需求来操控加速踏板,加速踏板通过钢丝拉线控制节气门开度。在EPC系统中,取消以前的油门拉线而用踏板装置的传感器来取代,发动机控制单元(ECU)根据踏板装置传感器来反馈的位置数据经过计算得到最佳目标节气门开度并发送一个信号给节气门驱动电机使节气门旋转到这个角度。
这种方式优于拉线式加速控制,因为电子油门通过对来自加速踏板位置的输入信号的计算、分析、得知发动机的动力需求并将这些信息通过各个执行器转变成发动机的转矩。由于安全、燃油消耗等原因,发动机的转速需要调整时,发动机控制单元可以不通过加速踏板来调节节气门的位置。这种结构的好处是控制单元能根据各种需求来限定节气门的位置。
EPC指示灯在大众车中比较常见。打开钥匙门后,车辆开始自检,EPC指示灯会点亮数秒,随后熄灭。如车辆启动后仍不熄灭,说明车辆机械与电子系统出现故障。一般来说EPC灯亮有两种可能。一是节气门脏了,应进行清洗。另一种情况是刹车灯不亮,需要检查刹车开关以及线路。 还有由于油品问题,EPC故障灯也会点亮。
电子差速锁
电子差速锁英文全称为ElectronicDifferentialSystem, 它是ABS的一种扩展功能,用于鉴别汽车的轮子是不是失去着地摩擦力,从而对汽车的打滑车轮进行控制。
工作原理
EDS的工作原理比较容易理解。因为差速器允许传动轴两侧的车轮以不同的转速转动,如果传动轴某一侧的车轮打滑或者悬空时,会造成另一侧车轮完全没了动力,当EDS电子差速锁通过ABS 系统的传感器,自动探测到由于车轮打滑或悬空而产生的两侧车轮转速不同的现象时,就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。当车辆的行驶状况恢复正常后,电子差速锁即停止作用。
当汽车驱动轴的两个车轮分别在不同附着系数的路面起步时,例如一个驱动轮在干燥的柏油路面上,另一个驱动轮在冰面上,EDS电子差速锁则通过ABS系统的传感器会自动探测到左右车轮的转动速度,当由于车轮打滑而产生两侧车轮的转速不同时,EDS系统就会通过ABS系统对打滑一侧的车轮进行制动,从而使驱动力有效地作用到非打滑侧的车轮,保证汽车平稳起步。
XDS
在国产的高尔夫GTI上我们听到了一个新名词:XDS电子差速锁。在官方网站上,厂家这样宣传它们的产品:“GTI在弯道上的出色动态平衡还得益于另一项法宝——XDS车辆动态电子差速锁,内置于ESP系统内的XDS可以避免内侧驱动轮的打滑,有效改善前驱车的转向不足现象;而大尺寸的刹车盘则提供了极其优异的制动性能,为驾驶者的极致速度提供了更安全的保障”。XDS系统似乎很强大,当然厂家的宣传需要辩证的看待,况且可能还有很多人并不明白:为什么避免内侧驱动轮打滑就能避免转向不足?
衡量一辆车性能优劣,除了看直线加速能力外,关键还是在弯道中的表现,高性能车型如果装备的是普通差速器的话,在高速过弯时会产生很多问题。在日常行驶中,我们认为四个车轮总是紧贴地面的,左右两侧车轮的抓地力的差异基本可以忽略,差速器将动力平均分配到左右车轮。但在激烈驾驶时情况就变得复杂了。
注:以下所说的“内侧轮”、“外侧轮”都指两侧的驱动轮,不包括从动轮。
● 问题一:动力的损失
细心的驾驶者都会有这样的感觉,那就是影响车辆动态表现的一个重要因素在于所谓的重量转移。举个例子,为什么汽车的前刹车盘都比后刹车盘大?因为车辆在强力刹车时由于惯性导致车体前倾,车身大部分重量移至前轴,所以前轮的刹车力度一定要大,后轴实际上只分担了很少一部分刹车工作。
同样的道理,车辆在高速转弯时会产生很大的离心力,而且转弯速度越快离心力也就越大,离心力会使车身重量转移到弯外的一侧,车里成员能清楚体会到的向外甩的力量,而我们从外面看到的车身表现就是弯外侧的悬挂被压缩,而弯内侧的车轮几乎可以离地,抓地力也急剧下降。
这时普通开放差速器的缺点开始暴露出来,那就是永远将扭矩平均分配到左右两半轴并且趋向于阻力较小的那一侧。具体到高速过弯中的车辆,由于内侧驱动轮阻力很小以致几乎悬空使得作用在该侧半轴上的扭矩较直线行驶时大为减小,抓地力的不足甚至可能令车轮开始出现打滑,而另一侧抓地力很大的车轮所获得的扭矩也同样小,对于驾驶者来说就等于动力的损失。这有点类似于我们做四驱系统测试时让一个车轮离地的状态:悬空的车轮疯狂空转而车辆只是停在那里勉强蠕动两下,不同之处是在高速过弯中驱动轮不一定完全离地并且持续的时间非常短暂。也许有人觉得这种现象只会持续区区几秒钟,不会对操控产生什么影响,但在争分夺秒的比赛中每个弯道相差哪怕0.1秒都可能决定胜败。
● 问题二:前驱车转向不足
现在我们来说说转向过度和转向不足。目前普遍的观点是前驱车倾向于转向不足而后驱车倾向于转向过度,这主要和前后轴的重量分配有关,大部分前驱车由于发动机和传动机构都布置在前轴之前,静态时的前后轴重分配本来就已近“头重脚轻”,弯道中重量前移使得前轴负荷进一步增大,这就很可能令前轮突破抓地极限,失去转向的作用,车身不再朝预定方向转弯而是沿着转弯弧线的切线方向推出去,就是我们平时所说的“推头”。
推头对于提升过弯速度来说显然是不利的,那么能不能尽量降低转向不足的影响呢?对于前驱车来说想改变重量分布的先天不足恐怕难度比较大,可以从另一个角度入手,那就是制造一个横摆力矩。
什么是横摆力矩?举个简单的例子,大家都有划过双桨的小船吧,在转向时我们会怎么做呢?如果是向左转,就要用力划右边的浆,这样就会产生一个向左的横摆力矩,船就向左转了。车辆转弯也可以采用相同的原理。有没有观察过坦克是如何拐弯的?通过两侧履带的差动,坦克甚至可以原地转圈。
回到汽车上,现在已经有了通过施加横摆力矩提升操控性的系统,最典型的有讴歌的SH-AWD系统、瀚德的第四代四轮驱动系统以及奥迪、宝马部分四驱车型后轴装备的主动扭矩分配装置等等。它们都采用相同的原理,那就是在车辆转向时主动将扭矩分配到外侧的车轮从而产生向弯内的横摆力矩帮助车辆过弯。
● XDS电子差速锁的作用:
XDS电子差速锁就是为了解决以上两个问题而出现的。说白了就是一个电子系统通过刹车模拟出来的限滑差速器。它的工作原理是当车辆极限状态时给抓地力很小的内侧驱动轮施加制动。据厂家人士称,XDS会对刹车盘施加5-15bar的制动力,1bar是每平方毫米是0.1N,折合平方厘米是10N,也就是每平方厘米1公斤出头。它的原理和一些越野车的车轮电子制动辅助类似。
给打滑车轮制动这一动作会产生两个效果:
一、内侧打滑车轮的阻力增大使得发动机传递更多的扭矩,相当于外侧抓地力良好的车轮获得了更多扭矩,提升了车辆的弯道性能;
二、由于内侧车轮抓地力很小而外侧车轮抓地力大,所以尽管扭矩依然是平均分配,但对于车辆来说更多的扭矩通过外侧车轮作用到地面,从而产生了一个指向弯内的横摆力矩帮助车辆转弯,一定程度上抑制了转向不足。
● XDS真的很神奇?
客观来讲,XDS确实能提升车辆的操控性,但如果用“神奇”来形容的话显然言过其实了。
首先我们从官方网站的叙述中就可以看出,XDS是基于ESP基础上延伸出来的功能,当今主流的ESP系统已经具备了对四个车轮进行独立制动的功能,也就是说在硬件上已经具备XDS的条件,关键就在于软件的升级了。
【教你玩转汽车】学车? 买车? 养车? 玩车?微信关注公众号"CARXCS"教你玩转汽车。专业汽车新媒体,已超过一百万车友关注,教你快速成为汽车行家~
[注:本文部分图片来自互联网!未经授权,不得转载!每天跟着我们读更多的书]
互推传媒文章转载自第三方或本站原创生产,如需转载,请联系版权方授权,如有内容如侵犯了你的权益,请联系我们进行删除!
如若转载,请注明出处:http://www.hfwlcm.com/info/151751.html