快捷搜索:

Ansys Workbench工程应用之——结构非线性(4):——屈曲(2)

 

上篇文章介绍了线性屈曲,本文主要介绍非线性屈曲——前屈曲的计算。

3 非线性屈曲

非线性屈曲包括基于初始缺陷的非线性屈曲,和塑形行为、接触、大变形响应的非线性屈曲。非线性屈曲考虑了历史加载过程、各种非线性因素、初始缺陷等因素,分析结果更接近真实结构的屈曲极限。

非线性屈曲分为前屈曲和后屈曲,加载方式可以是载荷,也可以是位移。载荷加载一般用于前屈曲分析。在应用了非线性控制——稳定性控制和重启后,载荷加载也可计算后屈曲。位移加载即可用于前屈曲,也可用于后屈曲。

3.1 前屈曲

(1)屈曲极限的取值问题

理想的前屈曲计算的位移—载荷图是这样的。屈曲极限即算得斜率为0时的载荷。由于计算前对屈曲的值是未知的,所以一般加载的载荷>估算的屈曲极限,所以斜率收敛为0后载荷将继续增加。

但是实际计算中,可能因为各种原因,特别是牛顿法的自身特性决定,斜率很多时候不能收敛为0,而是下图这样的,此时我们可以取斜率趋近于0而且突变的点作为屈曲极限。

基于初始缺陷比例因子问题

非线性屈曲计算常用的方法是基于初始缺陷或基于微小扰动的计算,他们能比线性特征值计算得到更加准确真实的屈曲极限载荷。

基于初始缺陷的屈曲计算流程是这样的:先建立特征值屈曲流程,再添加一个静态结构,继承材料的工程数据,然后将特征值屈曲的B6(求解栏)拖入到静态结构的C4(模型栏),便形成了一个基于初始缺陷的屈曲计算流程。

完成了流程建立后,需要定义初始缺陷。初始缺陷主要是指几何方面的缺陷,比如零件在生产、运输、安装调试过程中的变形,使得零件的形状与理想形状之间产生的差距。

在这套流程图中,定义初始缺陷很简单。右击流程中的B6(特征值屈曲的求解栏)——属性,在属性中设置基于特征值屈曲的第几阶模态形状的多少倍比例因子来进行计算。

很多书上对这个比例因子介绍的比较模糊,导致大量初学者望而生畏,图惜也很久没搞懂这个比例因子根据什么来设置。后来明白了才知道很简单,是想得太复杂了。很多时候,我们没搞懂一件事情,可能往往只需要别人提一句,就能茅塞顿开。此处图惜说一个公式,大家一看就懂了。

比例因子=零件实际形状÷特征值屈曲的模态形状。

再用实例解释下这个公式,一块矩形板第一阶屈曲模态如下。

现在,我们基于这个模态的变形形状,把它放大100倍,作为非线性计算的初始缺陷模型。按照上文设置,模式(翻译错误,应该为模态)=1,比例因子=100。

然后我们刷新B6,再进入到C项目中的Mechanical中查看零件的初始形状如下,可以发现,这个算例中的零件初始形状,是在屈曲分析的第一阶模态形状基础上放大了100倍。

明白了放大原理外,还有一个难点,就是到底比例因子取多少合适,这个问题就好比我吃饭应该用多大的碗,因为它没有一个标准答案。此处图惜可以给一些建议,首先我们应该忘记上图中的100,因为实际初始缺陷不可能这么大,对于机械制造行业,一些书本一来就整出10倍20倍的初始缺陷,那也是不合理的,在工厂里,打螺丝的小哥生产出变形这么大的零件,估计明天就得卷铺盖走人。

不同情况下,我们考虑的比例因子取值依据是不同的,比如细长压杆,主要失稳是第一阶压杆失稳,它失稳的模态形状是下图这样的,那么对它影响最大的初始缺陷就是杆的直线度。

再比例压力容器、压力管道外表面受压时某阶屈曲变形是下图这样的,那么对它影响最大的初始缺陷就是圆柱度、圆度等。

具体某个零件,只要生产、运输、安装调试完成,那么它的初始形状基本就确定了,一般质量部门会对它进行检验。比例某一批次压杆生产完成后,轴心直线度ф0.1~ф0.6mm,按照最恶劣情况计算取轴心直线度ф0.6mm,而在特征值计算中,第一阶屈曲位移主要变形为压杆的轴心弯曲,如果特征值最大位移1.2mm,那么初始缺陷我们可以取值为0.6/1.2=0.5。

还有一种情况,产品还没有开始生产,结构分析部门需要辅助设计部门对某零件进行屈曲分析,以便考核设计是否合理。对于这种情况,没有实际产品可供质量部门检验,那就需要查询图纸对形位公差和尺寸公差的要求,如果图纸也还没有出,那么就查本公司、或者本行业、或者国家的相关制造验收的规范,一般来说优先级是这样的:企业标准>行业标准>国家标准。常用施工/制造规范有《GB50755钢结构工程施工规范》,《GB50205钢结构工程施工质量验收规范》等,比如GB50205规范中有这样得规定

比如我们关心的屈曲模态为弯曲,那么最大初始缺陷就看弯曲矢高L/1500且不大于5mm,L为钢管长度。L/1500(且不大于5)÷某阶特征值屈曲最大位移量就是我们需要得比例因子。因为很多时候各阶特征值屈曲最大位移≈1mm,所以很多地方也直接取比例因子=L/1500(且不大于5),您在一些书上看到的实例中,超过7.5米管件比例因子取5就是这么来的。

不同的初始缺陷比例因子,计算结果也是不同的。初始缺陷比例因子越小,越不容易收敛,载荷达到屈曲极限附近的变化约激烈(圆角小);初始缺陷比例因子越大,越容易收敛,载荷达到屈曲极限附近的变化越缓慢(圆角大)。

实例2 使用非线性方法求解上例的屈曲极限

方法1(推荐)基于初始缺陷的非线性屈曲

Step1建立项目分析流程

在前面特征屈曲算例基础上,新建静态结构项目C,拖动B2至C2,B6至C4,此时C项目会自动删除几何结构一栏,建立了下图流程。

右击B6栏——属性,设置比例因子、模式(翻译错误,应该为模态)等。

初始缺陷比例因子=0.1,模式=1,即以第1阶特征值屈曲计算得到的变形的0.1倍作为初始的有缺陷的模型。

右击B6——更新。若不更新特征值算例的求解项目,将无法进入C项目的Mechaniacl程序。若提示更新错误,是因为文件未保存或保存了中文路径。

Step2边界条件的加载

双击C3进入Mechanical,材料、模型、接触、网格等数据会传递到C项目中,但是用户应检查接触是否有传递遗漏。

边界条件与特征值屈曲算例中相同设置,但是力需要设置为比特征值屈曲计算的屈曲极限稍大的力,此例设置为45000N,即当然也可以不设置力而设置位移。

Step3分析设置

首先开启大变形。

其次设置载荷子步,此例暂时设置初始子步=50,最小子步=40,最大子步=300,若遇到收敛问题再将相应值调大。

最后设置输出控制,存储结果在=所有时间点上。

Step4求解与后处理

点击求解Solve,非线性计算比特征值屈曲计算将花费更多的时间。

添加变形结果如下

添加支反力结果:右击特征树中求解——插入——探针——反力。

设置反力的属性,然后评估结果

要想直观形象地查看屈曲极限,可以通过建立支反力——最大位移的图表结果来实现,方法如下:

选中特征树中的求解,在标题栏选择求解——图表。

在属性中设置:定义选择中按住Ctrl同时选择结果中的总变形和反力。X轴设置为总变形(Max),读者也可设置为X方向的反力,道理是一样的。不显示时间轴、最小总变形、Y方向反力、Z方向反力等,计算结果如下图。

可以从结果中看到,计算到第38子步,载荷为42300N前,零件刚度缓慢降低,变形缓慢增长,计算到42300N后,零件刚度突然变小,位移急剧变大,说明屈曲极限约为42300N。

方法2(不推荐)基于微小扰动的非线性屈曲

非线性屈曲还有一种更简单的计算方法,无需计算特征值屈曲,直接使用静态结构的非线性功能计算,在加载压力之外,还需加载一个促使屈曲发生的微小横向扰动力。

这个微小力取多大的值不好评估,所以一般不推荐采用这种方法。

Step1建立项目分析流程

复制上例的第一个静态结构作为本例项目:静态结构D。

Step2边界条件的加载

双击D3进入Mechanical,边界条件与特征值屈曲算例中相同设置,力需设置为比特征值屈曲极限稍大,此处设置为45000N,再设置一个Z方向促使失稳的微小扰动力0.1N。

Step3分析设置

与基于初始缺陷的屈曲分析设置一样,开启大变形。设置载荷子步,此例暂时设置初始子步=50,最小子步=40,最大子步=300。设置输出控制,存储结果在=所有时间点上。

Step4求解与后处理

与上例添加相同的结果,在支反力——位移结果可以比上例更直观第看出突变点,在计算结果中,或许或出现反弹现象,比例下图中,位移达到6.7mm后又突然减小,我们只需要取刚度突变点作为屈曲极限即可。

在第39子步前,位移增量较小,第39~40子步位移增量突然变大,所以取第39子步载荷为屈曲极限,即43425N,与基于初始缺陷的屈曲计算差不多。

本图还可以看出屈曲附近的计算点太少,我们可以重新设置初始子步、最小子步、最大子步,重新计算。屈曲极限算得约为43200N。

大家或许会发现,以上的非线性计算中,我们并没有使用分析设置——非线性控制——稳定性功能。那是因为前屈曲计算一般不需要稳定性控制,在下文得后屈曲计算中,将用到稳定性控制。

[注:本文部分图片来自互联网!未经授权,不得转载!每天跟着我们读更多的书]


互推传媒文章转载自第三方或本站原创生产,如需转载,请联系版权方授权,如有内容如侵犯了你的权益,请联系我们进行删除!

如若转载,请注明出处:http://www.hfwlcm.com/info/157703.html