技术干货丨六问水产膨化饲料应用!
我国是世界水产饲料生产大国,水产饲料产量约占世界总产量的一半。近年来,在快速发展的水产饲料品种中,尤以膨化饲料的发展最为迅速,成为水产饲料行业的一个亮点和增长点。然而,在膨化加工的条件下,原料选用、营养参数确定、配方设计、加工工艺、投饲技术等均与传统颗粒饲料存在一些不同,但是,目前有关研究还很缺乏。本文结合本实验室近年来在膨化饲料领域开展的一些研究,拟就膨化饲料生产、使用中所关注的几个问题作一综述,为膨化饲料在水产养殖业中的合理应用提供一些思考和指导。
1. 膨化对营养物质消化利用率的影响
多项试验表明,膨化饲料主要是提高了淀粉和能量消化率,对蛋白质消化率影响相对较小,可能是由于存在能量(碳水化合物)对蛋白质的节约效应,尽管蛋白质的消化率改善不明显(或绝对提高值不大),最终也提高了蛋白质的沉积效率。
此外,膨化加工工艺对营养物质消化利用率的影响也是受到普遍关注的一个问题。Sørensen等(2002)研究了虹鳟在3种不同的挤压(膨化)温度(100、125、150℃)下对配合饲料主要营养物质的消化率,发现粗蛋白、能量及各种氨基酸的表观消化率并不受挤压温度的影响;Frederic等(2007)比较了调质与否、挤压腔温度(93、127℃)和物料在挤压腔停留时间(18、37s)对消化率的影响,发现调质可提高虹鳟对有机物、碳水化合物和能量的表观消化率,在没有预调制的情况下,127℃时的有机物、碳水化合物和能量表观消化率低于93℃,但在预调质的情况下,127℃时的有机物、碳水化合物和能量表观消化率高于93℃;脂肪的表观消化率受各加工条件的影响不大。这些研究提示我们,没有必要为追求膨化度而采用较高的温度和压力,在膨化加工中,预调质是十分必要的。
2.膨化饲料和颗粒饲料对鱼体生长性能作用效果的比较
在同等配方条件下,与颗粒饲料相比,膨化饲料在提高营养物质消化利用率的同时,也损失了一些热敏性营养素,如维生素、氨基酸等,存在降低鱼体生长性能的可能,综合这两方面作用,其最终对生产性能的影响如何?在这方面存在着一些结论相反的报道。
在我国的水产养殖生产中,如鲤鱼、草鱼、鲫鱼等,普遍反映膨化饲料更能提高鱼体生产性能,如生长速度更快,鱼体较肥等,似乎很少出现国外研究中的生产性能下降现象,这可能与国内外养殖的品种不同有关,我国常规养殖的鱼类,可能在摄食调节上不敏感,这方面有待于进一步研究。
另外,对于一些养殖鱼类,如黄颡鱼、斑点叉尾鮰等,摄食膨化饲料、颗粒饲料的差异,不仅体现在生长性能上,也体现在体色的差异上。如摄食膨化饲料的黄颡鱼,通常会有一定数量的个体(20%左右)出现体色异常的现象;在斑点叉尾鮰的养殖生产中,也出现过类似现象,即饲喂颗粒饲料的鮰鱼生长和体色正常,但同配方的膨化饲料,却使部分个体出现肉色、体色异常的现象。出现这些现象的原因,可能与膨化加工中的高温高压破坏了维生素等热敏性营养素有关。在这种情况下,可加大热敏性营养物质的添加量,或将膨化饲料与颗粒饲料搭配使用,二者间隔投喂,可在一定程度上解决这个问题。
3.膨化对蛋白质、脂肪需要量的影响
饲料膨化后,提高了对主要营养物质,如蛋白质、脂肪的消化率或利用率,这是否意味着鱼类对膨化饲料中的蛋白质、脂肪的需要量发生了改变?为此,本实验室设计了一系列不同蛋白水平、不同脂肪水平的配方,分别制成颗粒饲料和膨化饲料,以研究膨化加工对蛋白质、脂肪需要量的影响(马飞,2014)。
在实验一中,以豆粕、菜粕、棉粕和鱼粉为蛋白源,配制粗蛋白水平为25%、28%、31%的3种饲料,分别以膨化机、平模颗粒机制粒,共6组饲料,投喂平均体重8.0g奥尼罗非鱼8周,结果表明,罗非鱼幼鱼对颗粒饲料、膨化饲料适宜蛋白的需求量分别为31%、28%,饲料经膨化处理后,降低了罗非鱼对饲料蛋白质的需求量。
在实验二中,以大豆油为脂肪源,在饲料粗蛋白水平28%的基础饲料中,添加油脂0%、2%、4%,分别以平模颗粒机和膨化机制粒,共6组饲料,投喂平均体重8.0g奥尼罗非鱼8周,结果显示:在颗粒饲料组和膨化饲料组中,油脂添加2%组的鱼体增重率、蛋白质效率、脂肪沉积率、能量沉积率、干物质和粗蛋白表观消化率均较0%组显著提高,当油脂添加量增加到4%时,上述指标除干物质表观消化率和粗蛋白表观消化率下降外,其余指标与2%油脂添加组无显著差异;随饲料脂肪添加水平增加,鱼体脂肪含量显著增加。上述研究表明,在粗蛋白水平28%的膨化饲料和颗粒饲料中,适宜脂肪添加量均为2%,饲料经膨化处理后,并未降低罗非鱼对饲料脂肪的需求量。
4.膨化饲料中氨基酸的应用
由于鱼粉资源的紧缺和价格的不断上涨,使得越来越多的廉价动植物蛋白应用于水产饲料中,为平衡饲料氨基酸组成,氨基酸类添加剂在水产饲料中的使用越来越受到重视。在膨化饲料中,有二个问题特别受到关注,一是高温高压对氨基酸的破坏,二是膨化饲料中添加氨基酸的作用效果。
在膨化加工的高温高压条件下,一方面使蛋白质发生变性,有利于蛋白质的消化吸收;另一方面,也会产生美拉德反应,导致有效氨基酸的损失,从而降低饲料的营养价值。随温度的升高,晶体氨基酸损失量显著增加,而挤压温度对微囊氨基酸损失影响不显著;在膨化制粒条件下,微囊氨基酸较晶体氨基酸更为稳定。
在水产饲料中补充晶体氨基酸的作用效果,因鱼虾种类不同而异。通常的看法是鲑鳟鱼类等能有效利用外源添加的晶体氨基酸,而虾蟹类及一些无胃的鲤科鱼类不能有效利用,其原因在于晶体氨基酸吸收速度快,与饲料中结合态氨基酸(完整蛋白)在吸收利用上存在一个时间差,但这样的看法是建立在颗粒饲料基础上的,那么在膨化饲料基础上,补充晶体氨基酸是否还会产生同样的结果呢?本实验室以豆粕、鱼粉、棉粕为蛋白源,配制了缺乏蛋氨酸的基础饲料(蛋氨酸含量0.48%),在基础饲料中分别添加晶体蛋氨酸和微囊蛋氨酸使其含量达到0.58%,分别制成颗粒饲料和膨化饲料,饲喂平均体重8.6g建鲤8周,结果表明:在颗粒饲料中补充晶体蛋氨酸对鱼体生长性能没有改善,但补充微囊蛋氨酸提高了增重率11.4%,降低了饲料系数(P<0.05);在膨化饲料中补充晶体蛋氨酸或微囊蛋氨酸,均显著提高了增重率(+11.0% 、+11.9%),并降低了饲料系数(单玲玲,2014)。为什么膨化饲料中补充晶体氨基酸会对鱼体生长性能产生改善效果?其原因可能在于膨化加工使淀粉充分糊化,晶体蛋氨酸被糊化淀粉包被,使其在肠道中的吸收过程减缓,客观上起到了缓释作用,缩短了与结合态氨基酸的吸收时间差,从而达到与微囊氨基酸同等的效果。
5.膨化加工中维生素的损失
维生素是维持鱼虾正常生长、发育和繁殖所必需的微量小分子有机化合物,其化学性质较为活泼,饲料加工、贮存中的温度、水分、金属元素、光线等,均会对其造成一定程度的破坏,特别是在膨化加工中的高温、高压条件下,维生素的损失更为巨大。
为补偿膨化加工中的维生素损失,可以考虑增加维生素的添加量。Frederic等(2008)按NRC(1993)的维生素标准,配制了全植物蛋白型和鱼粉豆粕型饲料,并在此基础上增加了40%的维生素添加量,饲料经膨化制粒后,饲喂平均体重4.5g的虹鳟15周,结果表明,NRC标准的全植物蛋白型饲料组和鱼粉豆粕型饲料组的鱼体增重分别为86.1、83.9g,而维生素强化组的鱼体增重分别为86.8、105.2g,即在全植物蛋白型饲料中强化维生素添加量后,对生长性能并无改善,但在鱼粉豆粕型饲料中强化维生素添加量后,显著提高了生长性能。养殖生产中的虹鳟饲料多为鱼粉豆粕型,而很少采用全植物蛋白型饲料,因此,后者更具有实际意义。
总体来看,在膨化加工中,较为敏感的维生素有VA、VE、VC、VB1、叶酸等,而其他的B族维生素如VB2、VB12、烟酸、泛酸钙、生物素等相对较稳定。在生产中,许多厂家生产膨化饲料时,通常是在颗粒饲料配方的基础上,增加20%~50%的维生素添加量,实际上,这样的后果是造成一部分维生素因过量而浪费,一部分维生素因破坏严重而依然缺乏,维生素之间的不平衡现象严重,这可能是造成生产中使用膨化料后致使一些鱼类体色发生异常的重要原因。在考虑经济性和实用性的前提下,建议制作膨化饲料时,将维生素的用量总体增加1/4,另外再额外考虑增加VA、VE、VC、VB1、叶酸等。
6.膨化对矿物质可利用性的影响
目前,有关膨化加工对矿物质影响的研究很少。Cheng等(2003)以虹鳟为实验对象,测定了几种原料在膨化前后的矿物质表观消化率,结果表明,经膨化处理后,豆粕中的铁、锌,大麦中的磷、铜、锌,玉米蛋白粉中的磷、铜、铁、锌,小麦中的镁、磷、铜、锌的表观消化率均显著降低。对于额外添加的矿物元素在膨化后的消化利用率,可能存在一定程度的降低,但目前尚未见有关报道,有待于今后进一步研究。
总体来看,膨化饲料作为我国水产饲料中相对较新的品种,有关其营养需求,加工中营养物质的变化和配方的调整等,均表现出与颗粒饲料有所不同的特点,但目前有关其研究还比较缺乏。今后,一方面要加强有关膨化饲料的基础研究;另一方面,在研究尚不充分的现状下,加大热敏性营养物质的添加量,或将膨化饲料与颗粒饲料搭配使用,也不失为一种有效的使用方法。(本文转自【水产E线】。如有版权问题,敬请联系wx@fishfirst.cn。)
[注:本文部分图片来自互联网!未经授权,不得转载!每天跟着我们读更多的书]
互推传媒文章转载自第三方或本站原创生产,如需转载,请联系版权方授权,如有内容如侵犯了你的权益,请联系我们进行删除!
如若转载,请注明出处:http://www.hfwlcm.com/info/226882.html